
Ann & Richard Barshinger Life Science & Philosophy Building Franklin & Marshall College

Lancaster, Pennsylvania

Integration of DOAS and Make-Up Air Systems in a Multiple-Use Facility

The Pennsylvania State University – Department of Architectural Engineering

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Building Overview

Building Program:

- 104,000 sq. ft.
- Labs / Research
- General Classrooms
- Faculty/Staff Offices
- Student Study & Recreation

Building Cost:

- \$39.9M GMP Contract
- \$48.7M Finished

Construction:

- December 2005 August 2007
- Design Bid Build

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Building Overview

Electrical System:

- 480/277 3Φ Building Distribution
- 350 kW Emergency Generator (roof)
- 277V T8 primary lighting
 - 120V accents
- 1.945 W/ft² lighting power density

Structural System:

- Steel superstructure, braced frame
- Composite 6" concrete slabs
- 8" CMU back-up wall, face brick

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Building Overview

Mechanical System:

- (2) 50,000 cfm VAV AHUs on roof
- (1) 15,000 cfm 100% OA VAV AHU in basement
- (3) Exhaust AHUs on roof (matching airflows)
- VAV with hydronic reheat for all zones
- Run-around glycol heat recovery loop (heating only)
- MP Steam from Central Campus Steam System
- 550-ton centrifugal chiller in Central Utilities Plant
- Cooling Tower on building roof, expansion planned
- Exhaust-driven building airflow

	Cooling	Heating	Time
Occupied	72°F	70°F	6a - 6p, M-F
Unoccupied	85°F	65°F	All Other Times

Barshinger Life Science & Philosophy

Spring 2008 Senior Thesis

Brian Ault – Mechanical Option

Design Objectives

- Improve Ventilation / Indoor Air Quality
- Reduce CO2 Emissions & Energy Use
- Reduce Operating Costs
- Improve Energy Recovery
- Reduce Equipment size
- Provide on-site "Green Energy" source
- Increase R-value in Envelope
- Education Experience

Mechanical System Redesign

Replace Existing Single VAV Air Distribution System with two separate Air Systems

- DOAS with Parallel Water-Loop Heat Pumps throughout the building
- Make-Up Air Handler for Labs
 - Eliminates need for Reheat
 - Guarantees ASHRAE 62.1 Ventilation Standards are met
 - Greatly reduces airflow requirements

Replace Existing Runaround Loop with Energy Recovery Wheels

- Purge section prevents recirculation of possibly contaminated air
- Provides Sensible & Latent energy recovery year-round

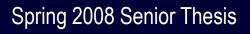
Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Mechanical System Redesign

DOAS / WLHP System

- (3) DOAS Units (10,000; 13,500; 2,500 cfm)
- 105 WLHP Units (1/2 5 tons each), heat pump only
- Provides ventilation & conditioning to entire building

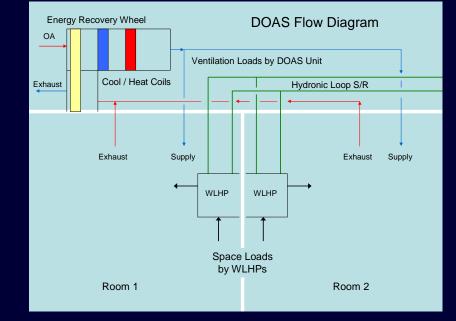

Lab Make-Up Air System

- (1) 19,000 cfm unit on roof
- Existing VAV boxes / lab controls / exhaust hoods
- Replacement air close to room conditions

Energy Recovery Wheels

• One Wheel with Purge Section at each of the 4 units

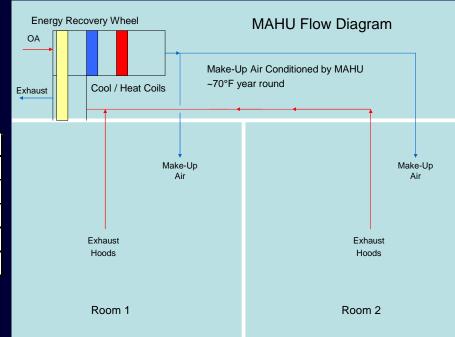
Barshinger Life Science & Philosophy


DOAS / Parallel WLHP

DOAS / WLHP System

- Ceiling plenum allows additional equipment
- Lochinvar 97% efficient 1.7 MBH condensing boiler for loop heat
- 300 ton (Chiller) + 200 ton (Loop) Cooling Towers (open, evaporative)
- 300 ton Carrier Screw Chiller
- 40% nominally efficient Recovery Wheels (Sens + Lat)
- Trane Axiom GEH WLHP Terminal Units

Brian Ault – Mechanical Option


Barshinger Life Science & Philosophy

Lab MAHU

Make-Up Air System

- Equipment placed on roof
- Heat provided by central campus steam (September-May)
- Chilled water from building (300 ton) chiller
- 40% nominally efficient Recovery Wheels (Sens + Lat)
- Integrated central lab exhaust

					DOAS		
	VAV SA	VAV OA	DOAS Total	Area	cfm OA	% drop	% drop
	max cfm	min cfm	max cfm	SF	per SF	OA	SA
Unit # 1	50,000	15,000	9,875	39,412	0.251	34.2%	80.3%
Unit # 2	50,000	15,000	13,320	37,390	0.356	11.2%	73.4%
Unit # 3	15,000	7,500	2,460	6,710	0.367	67.2%	83.6%
MAHU	0	0	18,925	20,630	0.92	N/A	
	115,000	37,500	44,580				

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

New System Components

System Benefits

- 62% reduction in maximum airflow
- Reduced Central Plant Capacity
- 12.5% reduction in Resource Energy Use
- Higher Ventilation Rates

Central Plant Sizing Data					
Item	VAV System	DOAS, w/ insul.			
Cooling Equipment Capacity	482 tons	414 tons			
Steam Plant Capacity	2683 MBH	1533 MBH			
Hydronic Reheat	1210 MBH	0 MBH			

	Original System			Re-Designed System		
	Cooling	Heating	Steam	Cooling	Heating	Steam
	Coil	Coil	Humidifier	Coil	Coil	Humidifier
	(tons)	(MBH)	(# / hr)	(tons)	(MBH)	(# / hr)
Unit # 1	177	675	476	80	101	63
Unit # 2	205	797	548	103	256	83
Unit # 3	28	47	54	20	55	16
MAHU	0	0	0	49	768	165

Brian Ault – Mechanical Option

Annual Source Energy Use (MMBTU)	VAV System	DOAS w/ WLHPs	DOAS Savings
Air System Fans	9,684	4,393	5291
Cooling	4,752	6,434	(1682)
Heating	5,598	1,841	3757
Pumps	465	2,763	(2298)
CT Fans	783	1,117	(334)
HVAC Sub-Total	21,282	16,548	4734
Lights	14,796	14,796	0
Electric Equipment	1,574	1,574	0
Non-HVAC Sub-Total	16,370	16,370	0
Grand Total	37,652	32,918	4734

Barshinger Life Science & Philosophy

Operating Cost Savings

- Carrier HAP 4.34 Building Model
- Annual energy savings of \$34,500
- Actually increased CO₂ emissions by 147 tons/year (VAV System w/ insulation)
- Added insulation reduces peak load, high internal loads increase system run-time

Annual Costs (\$)	VAV System	DOAS w/ WLHPs	DOAS Savings
Air System Fans	\$68,334	\$30,995	\$37,339
Cooling	\$33,521	\$45,397	(\$11,876)
Heating	\$45,344	\$17,642	\$27,702
Pumps	\$3,278	\$19,492	(\$16,214)
CT Fans	\$5,523	\$7,883	(\$2,360)
HVAC Sub-Total	\$156,000	\$121,409	\$34,591
Lights	\$104,418	\$104,418	\$0
Electric Equipment	\$11,105	\$11,105	\$0
Non-HVAC Sub-Total	\$115,523	\$115,523	\$0
Grand Total	\$271,523	\$236,932	\$34,591

Barshinger Life Science & Philosophy

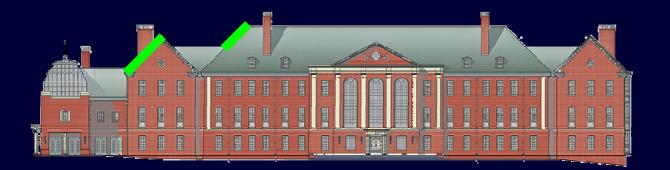
Spring 2008 Senior Thesis

Brian Ault – Mechanical Option

First-Cost Savings

- Turner Construction Bids, RS Means with O&P
- New System greatest savings ductwork & AHU/EAHUs
- Saves over \$580,000 (7.5%) in initial system cost

Brian Ault – Mechanical Option


Component	VAV System Cost	DOAS Cost	DOAS Savings
HVAC Piping	\$2,465,900	\$2,465,900	\$0
Plumbing/Specialty Piping	\$1,780,000	\$1,765,000	\$15,000
Sheet Metal	\$1,900,000	\$1,620,000	\$280,000
BAS	\$538,000	\$538,000	\$0
Test/Balance	\$93,300	\$93,300	\$0
AHUs/EAHUs (& VAV/Rs)	\$672,000	\$294,950	\$377,050
Chiller	\$175,000	\$91,500	\$83,500
Cooling Tower(s)	\$80,000	\$82,400	(\$2,400)
Steam-Hydronic RH HTX	\$24,860	\$0	\$24,860
Summer Boiler	\$23,100	\$0	\$23,100
WLHP Boiler	\$0	\$19,540	(\$19,540)
Dom. Hot Water Boilers	\$0	\$32,600	(\$32,600)
WLHP Units	\$0	\$163,275	(\$163,275)
	\$7,752,160	\$7,166,465	\$585,695

Barshinger Life Science & Philosophy

Electrical Breadth

Photovoltaic (PV) System

- North-South Building Orientation provides good opportunity for Solar Energy
- South-facing roof, with Vermont Slate replace with PVs, fluid-applied membrane
- Favorable Economics
- First Solar Technology on F&M campus
- Grid-tied provides CO₂ offset, peak reduction, less equipment

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Electrical Breadth

System Equipment

- BP Solar Panels (BP SX3195) 195 W Peak Power
- 178 Panels, 34.71kW Array
- Sunny Boy (SMA America) 6000US Grid-Tie Inverter
 - Integrated AC/DC Disconnect
- 38 tons CO₂ offset per year
- Roughly 55,000 kWh produced per year, on peak
- Weight and Cost offset by VT Slate Roof
- Connects directly to existing 208/120 panels in 3rd floor South Electrical Room

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Electrical Breadth

Roof Offsets

- Removed Slate saves weight and installation cost
- Installation of PV System replaces slate with lighter energy-producing surfaces
- Net Savings of 23,000 pounds
- Net Cost Increase of \$240,000
- Still a very long payback period, without other incentives / electricity cost increases

	per SF	Total
Saved \$	\$52.13	\$169,431.28
Saved weight	9.5	30,875
Additional \$	\$126.02	\$409,565.00
Additional weight	2.4	7,933
NET \$	\$73.89	\$240,133.72
NET weight	-7.1	-22,943

Simple Payback Period (years)					
	Average Minimum Maximum				
Full System	83.5	102.6	69.8		
Marginal Cost	49.0	60.1	40.9		

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Conclusions

- DOAS / WLHP System provides energy & first-cost savings, better ventilation
- Lab Make-Up Air eliminates reheat energy, wasted cooling energy
- Energy Recovery Wheels provide sensible & latent recovery year round
- Insulation reduces peak heating & cooling loads by 6.7%
- PV System provides some CO₂ and energy offset, still has 40 year payback
- Plant Infrastructure (piping) still to exist future expansion

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Recommendations

Include DOAS / WLHP system and Lab Make-Up system

- Energy savings
- First-cost savings
- Flexible System (remodeling through building life)

Include PV System

- Currently, not the best option
- Electricity Prices on the rise
- Building will last >40 years

Add Insulation to reduce peak loads

- Reduce internal loads (electrical power, lighting) to gain further savings
- If feasible at a later date, add thermal storage for the campus chilled water system
 - Sensible storage tank most likely option

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

Acknowledgements

- Turner Construction Company
- AE Department, especially the Mechanical Faculty
- Maria Cimilluca & Perry Scheid, Facilities & Operations, F&M
- Jason Weaver; F&M Outreach, Turner Construction (Photo Credits)
- Friends and Family for their support and understanding
- 5th Year AE Class of 2008, for their continued support

Spring 2008 Senior Thesis

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy

OCCSUBATIONS

Brian Ault – Mechanical Option

Barshinger Life Science & Philosophy